Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib

نویسندگان

  • Simon Vyse
  • Frank McCarthy
  • Malgorzata Broncel
  • Angela Paul
  • Jocelyn P. Wong
  • Amandeep Bhamra
  • Paul H. Huang
چکیده

Acquired drug resistance impacts the majority of patients being treated with tyrosine kinase inhibitors (TKIs) and remains a key challenge in modern anti-cancer therapy. The lack of clinically effective therapies to overcome resistance represents an unmet need. Understanding the signalling that drives drug resistance will facilitate the development of new salvage therapies to treat patients with secondary TKI resistance. In this study, we utilise mass spectrometry to characterise the global phosphoproteomic alterations that accompany the acquisition of resistance to two FDA-approved TKIs, pazopanib and dasatinib, in the A204 rhabdoid tumour cell line. Our analysis finds that only 6% and 9.7% of the quantified phosphoproteome is altered upon the acquisition of pazopanib and dasatinib resistance, respectively. Pazopanib resistant cells display elevated phosphorylation in cytoskeletal regulatory pathways while dasatinib resistant cells show an upregulation of the insulin receptor/IGF-1R signalling pathway. Drug response profiling rediscovers several previously reported vulnerabilities associated with pazopanib and dasatinib resistance and identifies a new dependency to the second generation HSP90 inhibitor NVP-AUY-922. This study provides a useful resource detailing the candidate signalling determinants of acquired TKI resistance; and reveals a therapeutic approach of inhibiting HSP90 function as a means of salvage therapy to overcome pazopanib and dasatinib resistance. SIGNIFICANCE Pazopanib and dasatinib are tyrosine kinase inhibitors (TKIs) approved for the treatment of multiple cancer types. Patients who are treated with these drugs are prone to the development of drug resistance and consequently tumour relapse. Here we use quantitative phosphoproteomics to characterise the signalling pathways which are enriched in cells that have acquired resistance to these two drugs. Furthermore, targeted drug screens were used to identify salvage therapies capable of overcoming pazopanib and dasatinib resistance. This data advances our understanding of the mechanisms of TKI resistance and highlights candidate targets for cancer therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small molecules inhibiting the nuclear localization of YAP/TAZ for chemotherapeutics and chemosensitizers against breast cancers

YAP and TAZ oncoproteins confer malignancy and drug resistance to various cancer types. We screened for small molecules that inhibit the nuclear localization of YAP/TAZ. Dasatinib, statins and pazopanib inhibited the nuclear localization and target gene expression of YAP and TAZ. All three drugs induced phosphorylation of YAP and TAZ, and pazopanib induced proteasomal degradation of YAP/TAZ. Th...

متن کامل

TKI combination therapy: strategy to enhance dasatinib uptake by inhibiting Pgp- and BCRP-mediated efflux.

The overexpression of efflux transporters, especially P-glycoprotein (Pgp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2), represents an important mechanism of multidrug resistance (MDR). Tyrosine kinase inhibitors (TKIs), a novel group of target-specific anticancer drugs, have recently been found to interact with Pgp and BCRP and to serve as both substrates and inhibitors. Con...

متن کامل

A chemical and phosphoproteomic characterization of dasatinib action in lung cancer

We describe a strategy for comprehending signaling pathways that are active in lung cancer cells and that are targeted by dasatinib using chemical proteomics to identify direct interacting proteins combined with immunoaffinity purification of tyrosine-phosphorylated peptides corresponding to activated tyrosine kinases. We identified nearly 40 different kinase targets of dasatinib. These include...

متن کامل

Models and Technologies Identification of Kinase Inhibitor Targets in the Lung Cancer Microenvironment by Chemical and Phosphoproteomics

A growing number of gene mutations, which are recognized as cancer drivers, can be successfully targeted with drugs. The redundant and dynamic nature of oncogenic signaling networks and complex interactions between cancer cells and the microenvironment, however, can cause drug resistance. While these challenges can be addressed by developing drug combinations or polypharmacology drugs, this ben...

متن کامل

Using mass spectrometry-based chemical proteomics, we report the comprehensive characterization of the drug-protein interaction networks for the multikinase inhibitors dasatinib and sunitinib in primary lung cancer tissue specimens

A growing number of gene mutations, which are recognized as cancer drivers, can be successfully targeted with drugs. The redundant and dynamic nature of oncogenic signaling networks and complex interactions between cancer cells and the microenvironment, however, can cause drug resistance. Whereas these challenges can be addressed by developing drug combinations or polypharmacology drugs, this b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 170  شماره 

صفحات  -

تاریخ انتشار 2018